

DEM&TER

Fête son 1er anniversaire!

01
Présentation des intervenants

Intervenants

Mot d'introduction

Kevin PUYSEGUR – Vice-Président de La Chambre d'Agriculture des Landes

Retour sur la première année de fonctionnement

Thomas Di Franco – VALOREM

Anne Sagot-Duvauroux, Pierre Delaunay et François Torres – GRCETA – SFA

Romain Grizou - INVENIO

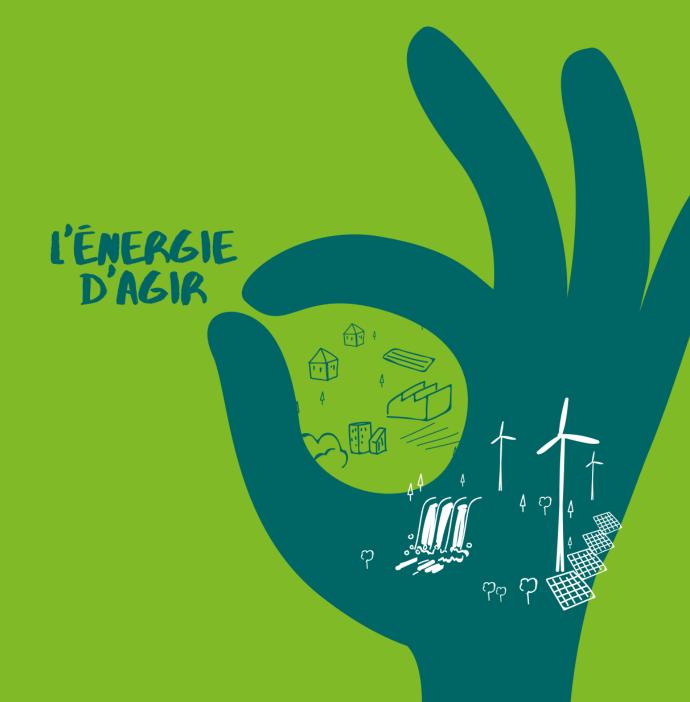
David Laborde – SCEA Laborde

Questions/réponses

Les objectifs sur l'année 2025

Mettre en culture le démonstrateur

S'assurer que le travail agricole est possible sous les panneaux


« Déverminer » le système d'irrigation

Tester notre organisation

02 DEM&TER

DEM&TER

En savoir plus demeter-agrivoltaisme-landes.fr

2 hectares

de centrale solaire et zones témoins

250 kWc

de puissance installée

3 organismes de suvi

des essais agronomiques et environnementaux

Soutien financier

3 ans minimum d'essais sur différentes cultures

Projet intégrant le Pôle National de Recherche sur l'Agri-photovoltaïsme

Quoi de prévu en 2025?

4 cultures implantées

Suivis de microclimat via 7 stations météo

Les zones d'essais

Zone « Grandes Cultures »

Largeur: 9 m

Zone « Cultures Pérennes »

Largeur: 8 m

Système d'irrigation

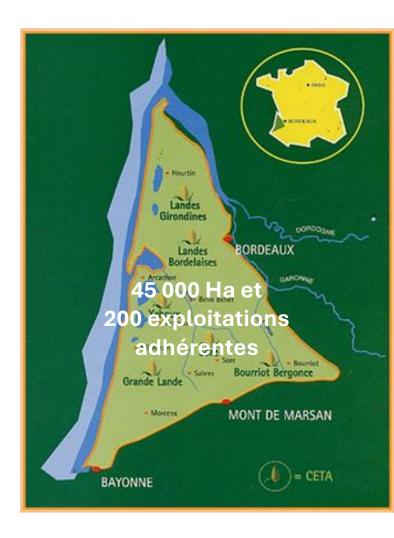
03

Retour sur l'année 2025 et projections

Le GRCETA-SFA:

Une référence technique locale représentative de la Haute Lande

Le centre


- Groupement de Recherche sur les Cultures et Techniques Agricoles des Sols Forestiers d'Aquitaine
- Créée en 1971 par et pour les agriculteurs de Haute Lande
- 8 ETP + 1 apprenti ingénieur
- Adhésion volontaire des agriculteurs = ressource majoritaire de l'association

La mission

Accompagner ses adhérents dans l'amélioration des performances technico-économiques & écologiques de leurs exploitations

Les objectifs

- > Recherche d'innovation pour faire face aux défis actuels
- Indépendance de l'association

Le GRCETA-SFA:

Une référence technique locale représentative de la Haute Lande

4 pôles de compétences

- 1. Agronomie et Grandes Cultures
- 2. Irrigation et Gestion de l'Eau
- 3. Hydraulique & Energie
- 4. Veille réglementaire & Qualification criTERREs,

Accompagnement à la certification environnementale

4 missions principales

- 1. Recherche & Expérimentation
- 2. Conseil, Formation & Animation
- 3. Veille réglementaire & technologique
- 4. Représentation

L'agriculture en Haute Lande

La naissance de l'agriculture sur le territoire

Avant 1850

Région de landes et de marais avec une agriculture pastorale et vivrière

1857

Première tentative de mise en valeur la zone sous Napoléon III

- Expériences agricoles multiples et variées mais souvent un échec
- Implantation des pins maritimes pour assainir le territoire, le rendre habitable (salubrité, économie)

Fin des années 40

Importants incendies (50 000 ha brulés, 80 décès)

Naissance de l'agriculture comme « pare feu » : création de la CALG et d'exploitations de 60 -70 ha

Années 60

Installation de rapatriés d'Afrique du Nord

1965 - 1970

Arrivée d'agriculteurs du nord de la zone

> Premières difficultés techniques peu à peu maitrisées, drainage, irrigation, fertilisation, chaulage

L'agriculture en Haute Lande

Les caractéristiques pédo-climatiques de la Haute Lande

Monsieur Philippe Chéry, Maître de conférences à Bordeaux Sciences Agro

Sols sableux à plus de 85 %, peu profonds (limités à 45 cm), MO = entre 3% et 4% en moyenne

Sols à faible capacité de rétention de l'eau (max 30 mm), sensibles au lessivage et à l'érosion

Horizon utilisable par les racines

Climat océanique avec une pluviométrie annuelle : 800 – 1200 mm

- ➤ Excédentaire l'hiver → drainage quasiment indispensable
- ➤ Déficitaire l'été (orages localisés parfois) → irrigation indispensable à une production agricole durable

100% des parcelles irriguées et 80% drainées

Couche d'alios → limite enracinement culture

Luzerne

30 avril - Semis

- À la volée puis rappuie superficiel
- > 25 kg/ha
- > En zone témoin et AgriPV

25 mai - Levée et développement de la luzerne

- > Fertilisation minérale potassique
- 2 désherbages chimiques

Luzerne

5 mai - Pose de sondes pour pilotage de l'irrigation

- Lien avec les données météo des stations METER
- ➤ Aide à l'irrigation pour l'agriculteur

9 juillet - Première récolte de la luzerne

- Irrégularités de désherbage liées au terrain entre zone témoin et agripv,
- Peuplement hétérogène
- > Irrigation limitante
- = Pas de résultats quantifiables
- 3 modalités agripv (est, ouest et milieu de la bande)
- 1 modalité témoin

Luzerne

20 août - Deuxième récolte de la luzerne

- Fortes chaleurs en août très impactantes.
- Réduction de la ressource en eau et choix stratégiques
- = Pas de résultats quantifiables
- > 3 modalités agripv (est, ouest et milieu de la bande)
- 1 modalité témoin

Luzerne

11 septembre – Reprise de végétation

> Très fortes irrégularités entre les modalités à cause de l'irrigation

23 septembre - Troisième récolte

- Reprise de végétation à la faveur des conditions climatiques de septembre (pluies, températures modérées)
- Une bande de luzerne très impactée par le stress hydrique
- > Témoin en bon état

Luzerne AgriPV

Soja

24 mai – Semi

- > Au semoir monograine
- > 400k gr/ha
- > En zone témoin et AgriPV

5 juin – Levée et développement du soja

- > Fertilisation minérale potassique
- 1 désherbage chimique

Soja

13 juin - Développement du soja

- Levées décalées
- ➤ Perte de pieds → dégâts de lièvres et mouche du semis
- > Enherbement important

9 juillet - Développement du soja

- Bon état végétatif malgré les manques de pieds
- Zone témoin impactée par davantage de dégâts + mauvaises herbes

Soja

1er août – Premier stress hydrique

- > Faible disponibilité en eau
- > Stade floraison et formation des gousses
- = Paramètres très impactants pour le rendement de la culture

Soja Témoin

20 août - Stress hydrique marqué

- Avortement des grains
- Sénescence précoce

Soja

11 septembre – Impact du stress hydrique

= Irrigation trop limitante, impact significatif sur le rendement

= Pas de récolte prévue

inveries Retour terrain sur l'année 2025

Framboisier

Culture

Espèces - Variété :

Framboises – Héritage

Plantation: 2025

Protocole de suivi

Catégorie	Mesure
Physiologie	Hauteur
	Stade phénologique
Sanitaire	Ravageurs
	Présence adventices rang + inter-rang
	Suivi global
	Mortalité
Production	Dates
	Rendement
	Qualité
Irrigation	Apports
	Besoins hydriques
Météo	Aléas climatiques

inverio Retour terrain sur l'année 2025

Framboisier

Les principales premières observations

Mesure	Observations		
Hauteur	Hauteur maximale plus élevée dans le témoin.		
Hautear	Beaucoup plus homogène sous les panneaux		
Stade phénologique	Témoin légèrement en avance sur l'apparition des premiers fruits (environ 10 j)		
Adventices rang + inter-rang	Développement des adventices plus important dans le témoin		
Aléas climatiques	Présence de brûlures sur les feuilles plus marquée dans le témoin		


Bilan Agro sur l'année 2025

Les points positifs

- Les cultures ont démarré correctement malgré des aléas propres à l'agriculture
- > Travail avec engins agricoles possible entre les panneaux, sous réserve d'adaptation
- Pas de dégâts constatés sur les panneaux/structures
- Nouvelle culture de luzerne fonctionne correctement sur la ferme
- Communication constructive avec l'agriculteur pour implanter et suivre les cultures
- Suivi expérimental rigoureux avec 5 répétitions pour chaque modalité

Les points d'amélioration

- Déploiement de surfaces irrigables en fonction de la ressource en eau
- > Simplification du pilotage d'irrigation
- Matériel agricole à adapter pour plus d'efficacité (désherbage chimique, mécanique)
- Coordination avec VALOREM/GRCETA/Les agri

Projections sur 2026

Volet agricole : 3 cultures expérimentales

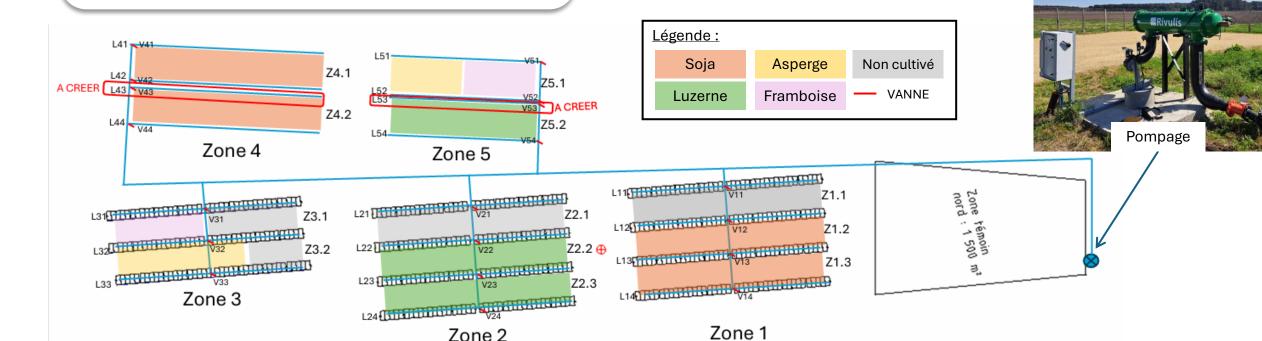
Luzerne

- Poursuite sur deuxième année
- Irrigation adéquate
- 1 bande agriPV/Témoin

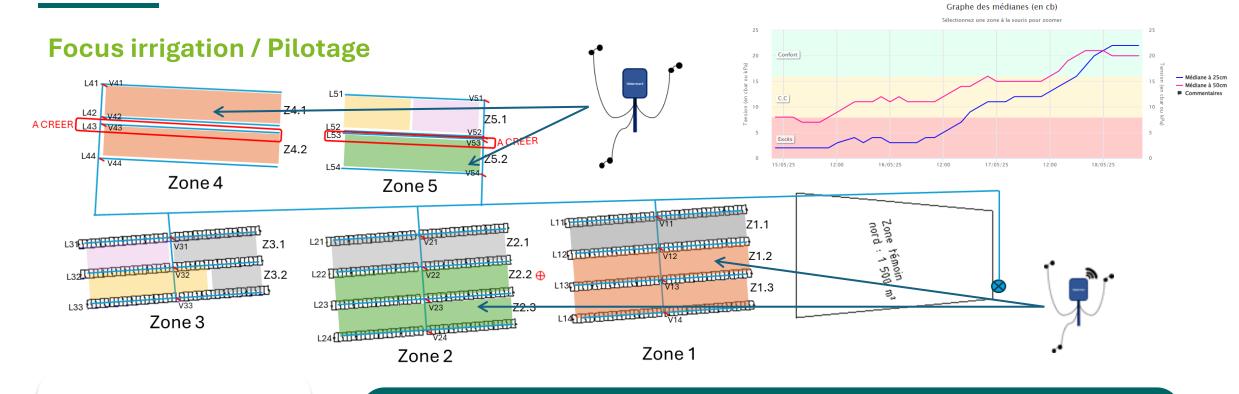
- Culture commune
- > Facile d'implantation
- Moindre besoin en eau
- ➤ 1 bande agriPV/Témoin

Soja

- Culture commune, bon débouché
- Poursuite après échec 2025
- 2 bandes agriPV/Témoin



Contexte


- Sol sableux de haute Lande = 20mm à 30mm de RU
- Période estivale ~> ETP = 7 mm
- Nécessité de faire des apports d'eau réguliers pour satisfaire les besoins en eau des cultures

Fonctionnement

- > 1 forage équipé d'une pompe de 18 m3/h alimente un réseau
- Chaque placette est irriguée au moyen de 16 asperseurs, soit un débit de 4,6 m3/h par placette (4 placettes irrigables en même temps en théorie)

- 2 sites avec télétransmission sur les modalités AgriPV
- 2 sites avec enregistreur sur la zone témoin


Pilotage

- ➤ Suivi des stades des cultures → Observations
- Suivi des pluviométries -> Station météo
- Suivi des irrigations -> Pilotage au plus près des besoins avec une stratégie sécuritaire

Un facteur limitant du développement des cultures

- Mesure du forage à 18 m3/h en début de saison
- > Chute rapide du débit > Mesure du forage à 2 m3/h en fin de saison
- = Impossible d'irriguer plusieurs placettes à la fois = Beaucoup de manutentions pour les agriculteurs

Graphique tensiométrique du Soja – 07/07/25 au 11/09/25

Voies d'amélioration pour 2026

Retrouver de la capacité d'irrigation

Faire nettoyer le forage

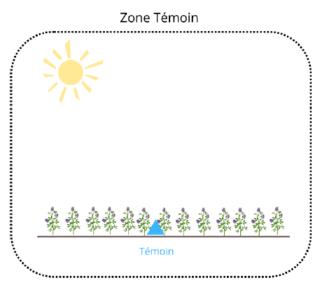
 \blacksquare

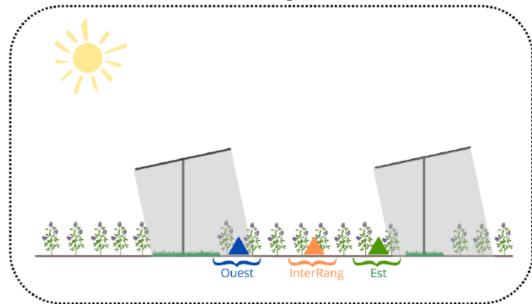
Réaliser un forage supplémentaire si nettoyage insuffisant Diminuer le nombre de placettes cultivées Faciliter la gestion au quotidien

Installer des électrovannes pour permettre un pilotage à distance

Améliorer la qualité d'irrigation

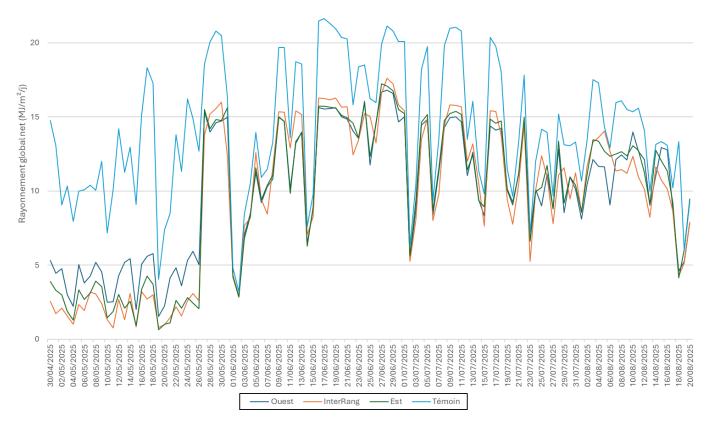
04
Analyse
Microclimatique




Le dispositif d'analyse

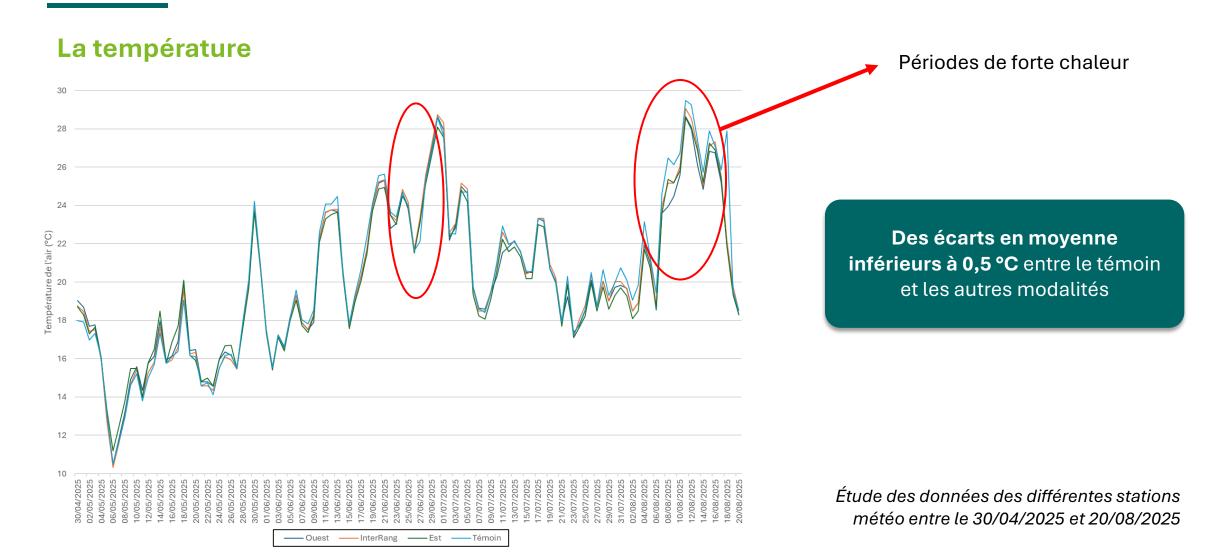
Le site dispose de 4 stations météo installées, ces stations météo permettent de **suivre les conditions climatiques** propres à chacune des modalités étudiées :

- Témoin : zone hors panneaux, servant de référence
- Zone AgriPV : divisée en trois modalités selon la position sous les panneaux :
 - Ouest
 - InterRang
 - > Est

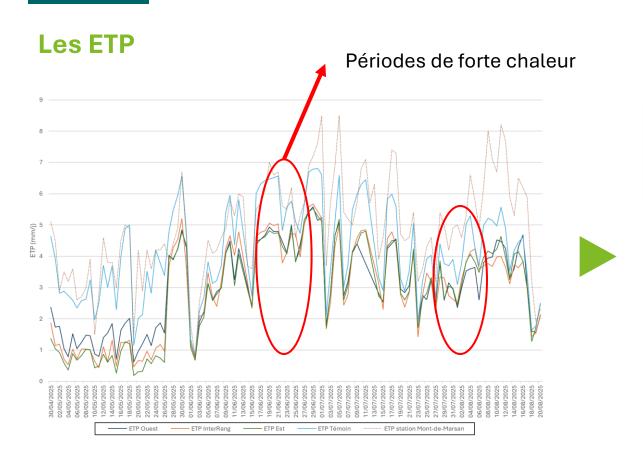


Zone AgriPV

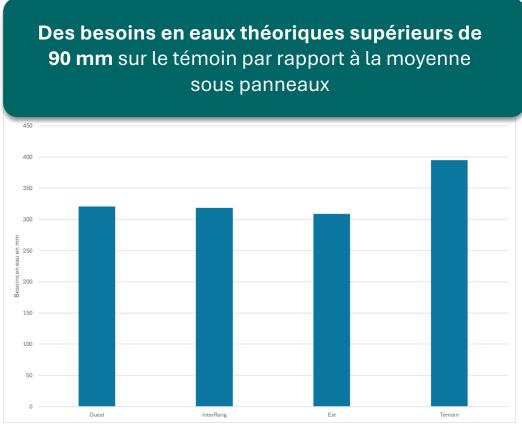
Le rayonnement



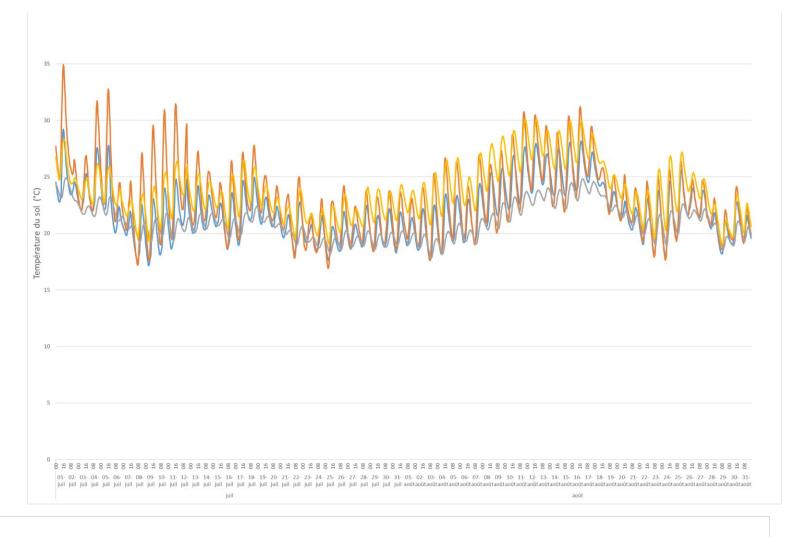
	Ouest	InterRang	Est	Témoin
Ray. Total (MJ/m²)	1126,98	1081,24	1104,08	1605,79
Écart au témoin (%)	29,8%	32,7%	31,2%	-


Un rayonnement sous les panneaux inférieurs de 30% par rapport au témoin

Étude des données des différentes stations météo entre le 30/04/2025 et 20/08/2025



Des ETP globalement plus élevées sur le témoin, notamment sur les périodes de fortes chaleurs


Les besoins en eau

Étude des données des différentes stations météo entre le 30/04/2025 et 20/08/2025

La température au sol

Des températures sous panneaux en moyenne **inférieures 2-3°C** par rapport aux températures dans l'inter-rang ou témoin

Conclusion & perspectives

En cas de capacité d'irrigation suffisante

Optimiser le pilotage de l'irrigation sous panneau

05
Production
photovotaique

Production photovoltaïque

QAVRIL

Perte arrêt production pour prix négatif sur le marché

Perte arrêt production pour prix négatif sur le marché

PJUIN

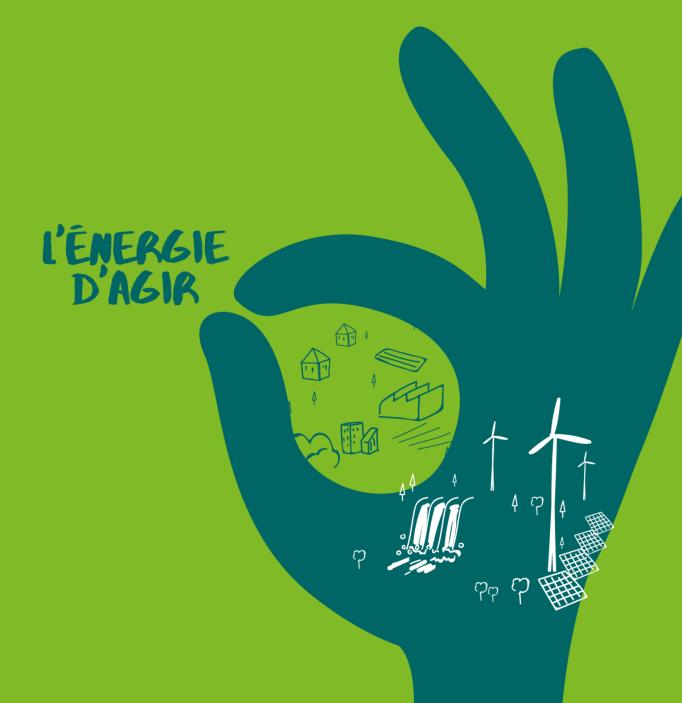
Perte arrêt production pour prix négatif sur le marché + Défaut réseau

JUILLET

Défaut onduleur 5 liée à la température dans le container

Q AOÛT

Défaut d'isolement TGBT suite intrusion animal sur le jeu de barre.


Production photovoltaïque

Niveau d'irradiation face avant et face arrière

06 Conclusion

Une année riche en apprentissage

Organisation du travail

Bilan

- Bonne communication avec toutes les parties prenantes
- Site adapté au travail agricole
- Aucun incident

A améliorer

Efficacité du travail (automatisation. achat de matériel adapté)

 \blacksquare

Aspects sécurité sur le site

Agronomie

Bilan

- Un soja qui s'est bien comporté
- Une luzerne qui repart bien malgré le stress hydrique
- Des framboisiers bien implantés sous PV

A améliorer

- Ouantifier les rendements
- Se concentrer sur les cultures à fort potentiel
- S'adapter à la ressource en eau

Ressource en eau

Bilan

- Irrigation qui a été possible jusque fin iuillet
- Pas de trace de fer sur les modules PV grâce au filtre

A améliorer

- Sécuriser le débit d'eau
- Automatiser le système
- Tester de nouveaux asperseurs

Photovoltaïque

Bilan

- · Impact conséquent du bifacial
- Productible supérieur sur les mois sans incidents

A améliorer

- Gestion des onduleurs
- Pilotage?

Microclimat

Bilan

 Influence positive de la centrale sur le sol

A améliorer

 Réflexion autour du pilotage pour optimiser l'irradiance et l'homogéniété des cultures

Merci de votre attention!

www.valorem-energie.com

Thomas DI FRANCO

Chef de Projets Agence de Nouvelle-Aquitaine

thomas.di-franco@valoremenergie.com Mob. 96 24 88 73 57

